
Fast Text Searching for Regular
Expressions or Automaton

Searching on Tries
RICARDO A. BAEZA-YATES

University of Chile, Santiago, Chile
AND

GASTON H. GONNET
Informatik, Zurich, Switzerland

Made by Mike Lakunin
Saint-Petersburg State University

Introduction

• In the article it’s considered the algorithm
for efficient searching a set of strings
described in terms of standard formal
language (that is regular expression) in an
extensive string (a text)

Where it supposed to be used in

Pattern Matching and Text searching are
very important components of many
problems such as:

• Text editing
• Data retrieval
• Symbol manipulation
• And many others…

Types of Searching

-Text:
– Preprocessed
– Not preprocessed

- Language specifications
- Regular Expression (RE)
- Other language specifications

There we’re interested in preprocessed
case when query is specified by RE

General Problem of Searching
The general searching problem consist of
finding occurrences in a string and
obtaining some of the following
information:

1. The location of the (first) occurrence
2. The number of occurrences
3. All the locations of the occurrences

And in general they’re not of the same
complexity.

Refinement of Problem

We are to find only starting position for a
match so it’s enough to find the shortest
string that matches query in a given
position.

Besides we assume that empty string is
not a member of our language. (trivial
answer)

Work background
Traditional Approach

Traditional approach for search is to use
Finite Automaton (FA) that recognizes the
language defined by Regular Expression
(RE) with the text as input.

Traditional Approach
Main Problems

• All the text must be processed so
algorithm is linear of size of the text (for
many applications it’s unacceptable)

• If the automaton is deterministic both the
construction time and number of states
can be exponential in the size of RE (not
crucial in practice)

Contribution of the paper

• There was many results for searching
strings & set of strings however no new
results for the time complexity of time
complexity of search of RE have been
published

• It’s the first algorithm found which achieve
sublinear expected time to search any RE
in a text and constant or logarithm
expected time for some restricted RE

Main Idea of Algorithm

The main idea behind these algorithms is
the simulation of the finite automaton of
the query over a digital tree (or Patricia
tree) of the text (our index).

The time savings come from the fact that
each edge of the tree is traversed at
most once, and that every edge
represents pairs of symbols in many
places of the text.

How the report organized

1. Some terminology and the background
2. Algorithm in case of restricted class of

RE (Case of Prefixed RE)
3. The main result: algorithm to search any

RE with its expected time analysis
4. Heuristic to optimize generic pattern

matching query

1.Some terminology and the background
2. Algorithm in case of restricted class of

RE (Case of Prefixed RE)
3. The main result: algorithm to search any

RE with its expected time analysis
4. Heuristic to optimize generic pattern

matching query

Preliminary
Notation

• ∑ is an alphabet
• ε is an empty string
• xy is a concatenation of string x and string y

w=xyz:
• x is a prefix of w
• z is a suffix of w
• y is a substring of w

Preliminary
Notation (continuation)

• + is a union
• * is a Kleene closure

i.e. r* is 0 or more occurrences of r
• ∑ is any symbol from ∑
• r?=e+r (0 or 1 occurrence of r)

Relationships between FA
Regular languages are accepted by deterministic
(DFA) or nondeterministic
(NFA) finite automata.

- For DFA we use standard definition
- There is a simple algorithm that, given a regular

expression r, constructs a NFA that accepts L(r)
in O(|r|) time and space.

• There are also algorithms to convert a NFA to a
NFA without e transitions(O(|r|²) and to a DFA
(O(2ª) (where a=|r|) states in the worst case)

Different Kinds of Text

• Static (changes rarely)
• Dynamic (changes often)

• Structured
(consider a text as a set of words)

• Unstructured
(consider a text as a single string)

Index for a Text
Definitions

• Text is string padded at its right end with an
infinite number of null.

• Suffix or Semi-infinite string (sistring) is the
sequence of characters starting at any position
of the text and continuing to the right.

• Tries are recursive tree structures that use the
digital decomposition of strings to represent a
set of strings and to direct the searching.

About Tries
(more precisely)

• If the alphabet is ordered, we have a
lexicographically ordered tree. The root of
the trie uses the first character, the
children of the root use the second
character, and so on. If the remaining
subtrie contains only one string, that
string’s position is stored in an external
node.

Examples

• Original text:
”The traditional approach for searching a
regular expression…”

• Sistrings
1. “The traditional approach for searching …”
2. “he traditional approach for searching a…”
3. “e traditional approach for searching a …”
4. “onal approach for searching a regular …”

Examples (continuation)

Practical Aspect
Patricia tree

• Ordinary Tries – Internal nodes O(n²)
• Patricia Tree-A Patricia tree [Morrison 1968] is

a trie with the additional constraint that single-
descendant nodes are eliminated. A counter is
kept in each node to indicate which is the next
bit to inspect.

• Patricia Tree internal nodes quantity is n – 1

n –there and below is number of sistrings

Some numbers around tries

• Expected height of a random trie:

))((log)(log2)(22 nonnH +=

))((log)(log)(22 nonnH +=

• Expected height of a Patricia tree:

Suffix Tries

• Suffix Tree is a trie using all sistrings
• Compact Suffix Tree the same as

Patricia trie (but with a little modification in
storage method)

• PAT arrays (just stores the leaves of the
trie in lexicographical order according to
the text contents)

Relationships between Tries and
Suffix Trees

• Although a random trie (independent
strings) is different from a random suffix
tree (dependent strings) in general, both
models are equivalent when the symbols
are uniformly distributed. Moreover, the
complexity should be the same for both
cases, because Hst(n)<= Ht(n).
Simulation results suggest that the
asymptotic ratio of both heights converges
to 1

1. Some terminology and the background
2. Algorithm in case of restricted class

of RE (Case of Prefixed RE)
3. The main result: algorithm to search any

RE with its expected time analysis
4. Heuristic to optimize generic pattern

matching query

Searching a Set of Strings
With common prefix

• Efficient searching of
all sistrings having a
given prefix can be
done using a Patricia
tree.

Finite Set of Strings

We extend the prefix searching algorithm
to the case of a finite set of strings.

• The simplest solution is to use prefix
searching for every member of the set.

• However, we can improve the search time
by recognizing common prefixes in our
query.

Complete Prefix Tree (CPT)

Complete prefix trie (CPT) is the trie of
the set of strings, such that:
- there are no truncated paths, that is,
every word corresponds to a complete
path in the trie; and
- if a word w is a prefix of another word x,
then only w is stored in the trie. In other
words, the search for w is sufficient to also
find the occurrences of x.

Complete Prefix Tree
(picture)

First version of algorithm
• Construct CPT of the query using binary alphabet
• Traverse simultaneously, if possible, the complete prefix

trie and the Patricia tree of sistrings in the text (the
“index”):

- That is, follow at the same time a 0 or 1 edge, if
they exist in both the trie and the CPT.
-All the subtrees in the index associated with
terminal nodes in the complete prefix trie are the
answer.

Note:
• Since we may skip bits while traversing the index, a final

comparison with the actual text is needed to verify the
result.

Analyzing results
of first version of algorithm

• Let |S| be the sum of the lengths of the set
of strings in the query. The construction of
the complete prefix trie requires time
O(|S|). Similarly, the number of nodes of
the trie is O(|S|), thus, the searching time
is of the same order.

• An extension of this idea leads to the
definition of prefixed regular expressions.

Prefixed Regular Expression
(PRE)

(definition)
Def (recursive definition):
• Ø is a PRE and denotes the empty set.
• ε (empty string) is a PRE and denotes the

set {ε}.
• For each symbol a in ∑, a is a PRE and

denotes the set {a}.

Prefixed Regular Expression (PRE)
(definition) (continuation)

If p and q are PREs denoting the regular sets P
and Q, respectively, r is a regular expression
denoting the regular set R such that ε is in R,
and x is in S,then the following expressions are
also PREs:

• p + q (union) denotes the set P U Q.
• xp (concatenation with a symbol on the left)

denotes the set xP.
• pr (concatenation with an e-regular expression

on the right) denotes the set PR, and
• p* (star) denotes the set P*.

Prefixed Regular Expression (PRE)
(Example)

PRE:

))((* bafdbcab +++ +

Not PRE:

ba *Σ

))()((cbdcba +++

Main Property of PRE

There exists a unique finite set of words
in the language, called prewords, such
that:

• for any other string in the language, one of
these words is a proper prefix of that string

• the prefix property: no word in this set is
a proper prefix of another word in the set.

Applying CPT Technique
to a PRE query

• To search a PRE query, we use the algorithm to
search for a set of strings,using the prewords of
the query. Because the number of nodes of the
complete prefix trie of the prewords is
O(|query|), the search time is also O(|query|).

• THEOREM. It is possible to search a PRE query
in time O(|query|) independently of the size of
the answer.

How the report organized

1. Some terminology and the background
2. Algorithm in case of restricted class of

RE (Case of Prefixed RE)
3. The main result: algorithm to search

any RE with its expected time analysis
4. Heuristic to optimize generic pattern

matching query

General Automaton Search

In this section, we present the algorithm
that can search for arbitrary regular
expressions in time sublinear in n on the
average. For this, we simulate a DFA in a
binary trie built from all the sistrings of a
text.

General Automaton Search
(Step by Step)

1. Convert the regular expression(query)
into minimized DFA(independent of the
size of the text)

2. Eliminate outgoing transitions from final
states

3. Convert character DFA into binary DFA
(Each state will then have at most two
outgoing transitions, one labelled 0 and
one labelled 1)

General Automaton Search
(Step by Step) (continuation)

4. Simulate binary DFA
on the binary trie of all
sistrings. So associate:
-root of the tree with
initial state
-for any internal node
associated with state
i,associate its left
descendant with state j
if i → j for a bit 0, and
associate its right
descendant with state k
if i →k for a bit 1

General Automaton Search
(Step by Step) (picture)

General Automaton Search
(Step by Step) (where to stop)

5. For every node of the index associated
with a final state, accept the whole
subtree and halt.

6. On reaching an external node, run the
remainder of the automaton on the single
string determined by this external node.

Analyzing Algorithm

• To adapt the algorithm to run on a Patricia
tree, it is necessary to read the
corresponding text to determine the
validity of each “skipped” transition(the
sistring starting at any position in the
current subtree may be used)

The complexity of the algorithms is
considered in the following theorem…

Main Theorem

Theorem The expected number of comparisons
performed by a DFA for a query q represented by
its incidence matrix H while searching the trie of n
random strings is sublinear, and given by

))((log2
rt nnO

i

iii

ii

m
mt

r

 tiesmultiplici with H of seigenvalue theare s theWhere
)such that ,1(max

)(max
1log

i

2

λ
λλ

λλ
λ

=−=

=

<=

Remarks about the proof

• In the proof we use Mellin Transform

Analyzing Theorem

• As a corollary of the theorem above, it is
possible to characterize the complexity of
different types of regular expressions
according to the DFA structure.

• For example, DFAs having only cycles of
length 1, have a largest eigenvalue equal
to 1, but with multiplicity proportional to
the number of cycles, obtaining a
complexity of O(polylog(n)).

How the report organized

1. Some terminology and the background
2. Algorithm in case of restricted class of

RE (Case of Prefixed RE)
3. The main result: algorithm to search any

RE with its expected time analysis
4. Heuristic to optimize generic pattern

matching query

Substring Analysis for Query
Planning

• In this section, we present a general
heuristic, which we call substring
analysis, to plan what algorithms and
order of execution should be used for a
generic pattern matching problem, which
we apply to regular expressions.

• The aim of this section is to find from
every query a set of necessary conditions
that have to be satisfied.

Substring Graph

• Def Substring graph of a regular
expression r is an acyclic directed graph
such that each node is labelled by a
string.And it’s defined recursively by the
following rules

Substring Graph
(recursive definition)

1. G(ε) is a single node labelled ε.

2. G(x) for any x in ∑ is a single node
labelled with x.

Substring Graph
(recursive definition)

3. G(s+t) is the graph built
from G(s) and G(t) with
an ε-labelled node with
edges to the source
nodes and an ε-labelled
node with edges from
the sink nodes(a).

4. G(st) is the graph built
from joining the sink
node of G(s) with the
source node of G(t) (b),
and relabelling the node
with the concatenation
of the sink label and the
source label.

Substring Graph
(recursive definition)

5. G(r1) are two
copies of G(r) with
an edge from the
sink node of one to
the source node of
the other, as shown
in (c).

6. G(r*) is two
ε-labelled nodes
connected by an
edge (d).

Substring Graph
(examples)

)()((b)
))()((a)(

*

*

tunohideuvopijefab
eameahsca

+++Σ++++

++++

Substring Graph
(How to Use)

• After building G(q), we search for all node
labels in G(q) in our index of sistrings,
determining whether or not that string exists in
the text (O(|q|) time). For all nonexistent labels,
we remove:

• —the corresponding node,
• —adjacent edges, and
• —any adjacent nodes (recursively) from which

all incoming edges or all outgoing edges have
been deleted.
This reduces the size of the query.

Substring Graph
(How to Use) (continuation)

• from the number of occurrences for
each label we can obtain an upper
bound on the size of the final answer to
the query:
– For adjacent nodes (serial, or and, nodes) we

multiply both numbers
– for parallel nodes (or nodes) we add the

number of occurrences
Note:ε-nodes are simplified and treated in a

special way

Substring Graph
(How to Use) (managing ε-nodes)

• consecutive serial ε -nodes are replaced by a
single ε -node (for example, the lowest nodes in
(a)),<picture on the next slide>

• chains that are parallel to a single e-node, are
deleted (e.g., the leftmost node labelled with a in
(a))

• the number of occurrences in the remaining
ε -nodes is defined as 1
(after the simplifications,ε -nodes are always
adjacent to non-ε-nodes, since ε was assumed
not to be a member of the query).

Substring Graph
(How to Use) (example)

• In our example, the
number of
occurrences for
Figure 6(b) can be
bounded by600,
this bound is useful
in deciding future
searching
strategies for the
rest of the query.

Result/Final Remark
• Using Patricia Tree we can search for many

types of string independently of size of the
answer in logarithmic average time

• Automaton searching in a trie is sublinear in the
size of the text on average for any regular
expression

• The worst case is linear. The pathological cases
consist of periodic patterns or unusual pieces of
text that, in practice, are rarely found.

• most real queries coming from users of Oxford
English Dictionary as RE were resolved in about
O(√n) node inspections

Result/Final Remark
(open problems)

• To find algorithm with logarithmic search time
for any RE

• to obtain the lower bound for searching RE in
preprocessed text

• Also there is interesting problem is if there
exist efficient algorithm for bounded “followed-
by” problem:

21 ss k≤Σ

The End

	Fast Text Searching for Regular Expressions or Automaton Searching on Tries
	Introduction
	Where it supposed to be used in
	Types of Searching
	General Problem of Searching
	Refinement of Problem
	Work backgroundTraditional Approach
	Traditional ApproachMain Problems
	Contribution of the paper
	Main Idea of Algorithm
	How the report organized
	
	PreliminaryNotation
	PreliminaryNotation (continuation)
	Relationships between FA
	Different Kinds of Text
	Index for a TextDefinitions
	About Tries (more precisely)
	Examples
	Examples (continuation)
	Practical AspectPatricia tree
	Some numbers around tries
	Suffix Tries
	Relationships between Tries and Suffix Trees
	
	Searching a Set of StringsWith common prefix
	Finite Set of Strings
	Complete Prefix Tree (CPT)
	Complete Prefix Tree(picture)
	First version of algorithm
	Analyzing results of first version of algorithm
	Prefixed Regular Expression(PRE)(definition)
	Prefixed Regular Expression (PRE)(definition) (continuation)
	Prefixed Regular Expression (PRE)(Example)
	Main Property of PRE
	Applying CPT Technique to a PRE query
	How the report organized
	General Automaton Search
	General Automaton Search(Step by Step)
	General Automaton Search(Step by Step) (continuation)
	General Automaton Search(Step by Step) (picture)
	General Automaton Search(Step by Step) (where to stop)
	Analyzing Algorithm
	Main Theorem
	Remarks about the proof
	Analyzing Theorem
	How the report organized
	Substring Analysis for Query Planning
	Substring Graph
	Substring Graph(recursive definition)
	Substring Graph(recursive definition)
	Substring Graph(recursive definition)
	Substring Graph(examples)
	Substring Graph(How to Use)
	Substring Graph(How to Use) (continuation)
	Substring Graph(How to Use) (managing ε-nodes)
	Substring Graph(How to Use) (example)
	Result/Final Remark
	Result/Final Remark(open problems)
	The End

